Novel Data Augmentation Employing Multivariate Gaussian Distribution for Neural Network-Based Blood Pressure Estimation

نویسندگان

چکیده

In this paper, we propose a novel data augmentation technique employing multivariate Gaussian distribution (DA-MGD) for neural network (NN)-based blood pressure (BP) estimation, which incorporates the relationship between features in multi-dimensional feature vector to describe correlated real-valued random variables successfully. To verify proposed algorithm against conventional algorithm, compare results terms of mean error (ME) with standard deviation and Pearson correlation using 110 subjects contributed database (DB) includes systolic BP (SBP), diastolic (DBP), photoplethysmography (PPG) signal, electrocardiography (ECG) signal. For each subject, 3 times (or 6 times) measurements are accomplished PPG ECG signals recorded 20 s. And, performance estimation (BPE) algorithms, train BPE model two-stage system, called stacked NN. Since can express properly than errors turn out lower compared shows superiority our approach.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data

Sample code Thickness Unif. Cell Size Unif. Cell Shape Marginal Adhesion Epithelial Cell Size Bare Nuclei Bland Chromatin Normal Nucleoli Mitoses Class 1000025 5 1 1 1 2 1 3 1 1 Benign 1002945 5 4 4 5 7 10 3 2 1 Benign 1015425 3 1 1 1 2 2 3 1 1 Benign 1016277 6 8 8 1 3 4 3 7 1 Benign 1017023 4 1 1 3 2 1 3 1 1 Benign 1017122 8 10 10 8 7 10 9 7 1 Malignant 1018099 1 1 1 1 2 10 3 1 1 Benign 101856...

متن کامل

Error Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network

State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...

متن کامل

The Multivariate Gaussian Distribution

A vector-valued random variable X = X 1 · · · X n T is said to have a multivariate normal (or Gaussian) distribution with mean µ ∈ R n and covariance matrix Σ ∈ S n ++ 1 if its probability density function 2 is given by p(x; µ, Σ) = 1 (2π) n/2 |Σ| 1/2 exp − 1 2 (x − µ) T Σ −1 (x − µ). We write this as X ∼ N (µ, Σ). In these notes, we describe multivariate Gaussians and some of their basic prope...

متن کامل

On-Line Estimation with the Multivariate Gaussian Distribution

We consider on-line density estimation with the multivariate Gaussian distribution. In each of a sequence of trials, the learner must posit a mean μ and covarianceΣ; the learner then receives an instance x and incurs loss equal to the negative log-likelihood of x under the Gaussian density parameterized by (μ,Σ). We prove bounds on the regret for the follow-the-leader strategy, which amounts to...

متن کامل

Daily Pan Evaporation Estimation Using Artificial Neural Network-based Models

Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11093923